摘要:管理類(lèi)聯(lián)考考研的七個(gè)專(zhuān)業(yè)的考試科目都包含204考研英語(yǔ)(二),為方便考生們提高英語(yǔ)寫(xiě)作水平,希賽網(wǎng)為考生整理了考研英語(yǔ)二經(jīng)典外刊選讀文章,方便各位考生備考。
本文為管理類(lèi)聯(lián)考考研英語(yǔ)二外刊選讀第四篇,可點(diǎn)擊上方藍(lán)色圖標(biāo)“本文資料”,免費(fèi)獲取更多管理類(lèi)聯(lián)考考研英語(yǔ)二外刊選讀內(nèi)容,方便各位考生備考、了解考試內(nèi)容。
The Relationship between AI and Humans
題材:科技類(lèi)
出處:The Economist《經(jīng)濟(jì)學(xué)人》
字?jǐn)?shù):786 words
[1] If you ask something of ChatGPT, an artificial-intelligence (AI) tool that is all the rage, the responses you get back are almost instantaneous, utterly certain and often wrong. It is a bit like talking to an economist. The questions raised by technologies like ChatGPT yield much more tentative answers. But they are ones that managers ought to start asking.
【假如你向眼下爆紅的人工智能(AI)工具ChatGPT提問(wèn),得到的是幾乎即時(shí)、十分有底氣但常常是錯(cuò)誤的答復(fù)。有點(diǎn)像跟經(jīng)濟(jì)學(xué)家對(duì)話(huà)。相比之下,關(guān)于ChatGPT這類(lèi)技術(shù)引發(fā)的疑問(wèn),答案卻模糊猶疑得多。但是這類(lèi)問(wèn)題才是管理者應(yīng)該開(kāi)始提出的。】
【重點(diǎn)詞匯】
artificial-intelligence (AI) 人工智能
be all the rage 十分流行;風(fēng)靡一時(shí)
instantaneous /??nst?n?te?ni?s/ adj. 立即的;立刻的
utterly /??t?l?/ adv. 完全地;徹底地
yield /ji?ld/ v. 出產(chǎn)(作物);產(chǎn)生(收益、效益等);提供 n. 產(chǎn)量;產(chǎn)出
tentative /?tent?t?v/ adj. 不確定的;不肯定的;猶豫不定的
ought to modal verb.(情態(tài)動(dòng)詞)應(yīng)該
[2] One issue is how to deal with employees’ concerns about job security. Worries are natural. An AI that makes it easier to process your expenses is one thing; an AI that people would prefer to sit next to at a dinner party quite another. Being clear about how workers would redirect time and energy that is freed up by an AI helps foster acceptance. So does creating a sense of agency: research conducted by MIT Sloan Management Review and the Boston Consulting Group found that an ability to override an AI makes employees more likely to use it.
【一個(gè)問(wèn)題是如何處理員工對(duì)飯碗的擔(dān)憂(yōu)。擔(dān)心是自然的。讓你處理報(bào)銷(xiāo)時(shí)更省力的AI是一回事,在晚宴上你愿意坐在它身邊的AI又是另一回事。如果向員工講清楚可以怎樣把AI幫助釋放的時(shí)間和精力改用在其他方面,員工的接受度就會(huì)上升。賦予員工主導(dǎo)感也有同樣的效果:《麻省理工斯隆管理評(píng)論》(MIT Sloan Management Review)和波士頓咨詢(xún)公司的研究發(fā)現(xiàn),如果員工覺(jué)得自己有能力推翻AI的指令,就更有可能使用AI。】
【重點(diǎn)詞匯】
redirect /?ri?d??rekt/ v. 重新使用;使轉(zhuǎn)向
override /???v??ra?d/ v. 否決,推翻;比…更重要;凌駕
[3] Whether people really need to understand what is going on inside an AI is less clear. Intuitively, being able to follow an algorithm’s reasoning should trump being unable to. But a piece of research by academics at Harvard University, the Massachusetts Institute of Technology and the Polytechnic University of Milan suggests that too much explanation can be a problem.
【至于人們是否真的需要了解一個(gè)AI系統(tǒng)的內(nèi)部原理,答案就沒(méi)那么清晰了。直覺(jué)反應(yīng)會(huì)是,能弄懂算法背后的推理邏輯應(yīng)該比不懂要好。但哈佛大學(xué)、麻省理工學(xué)院和米蘭理工大學(xué)的學(xué)者的一項(xiàng)研究表明,解釋太多可能也是個(gè)問(wèn)題。】
【重點(diǎn)詞匯】
intuitively /?n?tju??t?vli/ adv. 憑直覺(jué)地
algorithm /??lɡ?r?e?m/ n. 算法;計(jì)算程序
trump /tr?mp/ v. (因說(shuō)或做得更好而) 勝過(guò) n.王牌
【長(zhǎng)難句分析】
Whether people really need to understand what is going on inside an AI is less clear.
主句:… is less clear.
主語(yǔ)從句:whether people really need to understand…
賓語(yǔ)從句:what is going on inside an AI
[4] Employees at Tapestry, a portfolio of luxury brands, were given access to a forecasting model that told them how to allocate stock to stores. Some used a model whose logic could be interpreted; others used a model that was more of a black box. Workers turned out to be likelier to overrule models they could understand because they were, mistakenly, sure of their own intuitions. Workers were willing to accept the decisions of a model they could not fathom, however, because of their confidence in the expertise of people who had built it. The credentials of those behind an AI matter.
【他們給擁有多個(gè)奢侈品牌的Tapestry集團(tuán)的員工提供了一個(gè)預(yù)測(cè)模型,可以指導(dǎo)他們?cè)诘赇佒g調(diào)配庫(kù)存。一組人用的是邏輯可被解釋的模型,另一組使用的是更像個(gè)黑箱的模型。結(jié)果顯示,員工往往會(huì)因?yàn)榇_信自己的直覺(jué)(盡管是錯(cuò)誤的)而推翻他們能理解的模型所做的決定。但他們更愿意接受自己無(wú)法理解的模型所做的決定。但他們更愿意接受自己無(wú)法理解的模型所做的決定,因?yàn)樾湃文P徒?gòu)者的專(zhuān)業(yè)性。AI開(kāi)發(fā)人員的資歷很重要?!?/p>
【重點(diǎn)詞匯】
portfolio /p??t?f??li??/ n. (產(chǎn)品或設(shè)計(jì)的) 系列;文件夾
allocate /??l?ke?t/ v. 分配
interpret /?n?t??pr?t/ n. 詮釋;說(shuō)明
fathom /?f?e?m/ v. 理解;徹底了解
expertise /?eksp???ti?z/ n. 專(zhuān)業(yè)技能;專(zhuān)門(mén)知識(shí)
credential /kr??den?l/ v. 給……提供證書(shū);資質(zhì)
【長(zhǎng)難句分析】
Workers turned out to be likelier to overrule models they could understand because they were, mistakenly, sure of their own intuitions.
主句:workers turned out to be likelier to overrule models
定語(yǔ)從句:(that)they could understand
原因狀語(yǔ)從句:because they were sure of their own intuitions
[5] The different ways that people respond to humans and to algorithms is a burgeoning area of research. In a recent paper Gizem Yalcin of the University of Texas at Austin and her co-authors looked at whether consumers responded differently to decisions—to approve someone for a loan, for example, or a country-club membership—when they were made by a machine or a person. They found that people reacted the same when they were being rejected. But they felt less positively about an organisation when they were approved by an algorithm rather than a human. The reason? People are good at explaining away unfavourable decisions, whoever makes them. It is harder for them to attribute a successful application to their own charming, delightful selves when assessed by a machine. People want to feel special, not reduced to a data point.
【人們對(duì)人類(lèi)和算法的不同反應(yīng)是個(gè)快速發(fā)展的研究領(lǐng)域。在近期一篇論文中,得克薩斯大學(xué)奧斯汀分校的吉澤姆·亞爾欽(Gizem Yalcin)和合著者研究了消費(fèi)者對(duì)機(jī)器和人類(lèi)所做的決定(例如貸款或鄉(xiāng)村俱樂(lè)部會(huì)員資格的審批)是否有不同反應(yīng)。他們發(fā)現(xiàn),在被拒絕時(shí),人們對(duì)兩者的反應(yīng)是一樣的。但當(dāng)被批準(zhǔn)時(shí),如果他們得知決定是由算法而非人類(lèi)做出的,他們對(duì)相關(guān)機(jī)構(gòu)的好感會(huì)降低。原因何在?人們善于為于己不利的決定找理由自我開(kāi)解,不管決定是誰(shuí)做的。但如果是由機(jī)器評(píng)估,就不容易把申請(qǐng)成功歸結(jié)為自己有魅力、招人喜歡。人們希望感到自己很特別,而不愿意淪為一個(gè)數(shù)據(jù)點(diǎn)?!?/p>
【重點(diǎn)詞匯】
burgeon /?b??d??n/ v. 迅速生長(zhǎng)
loan /l??n/ n. 貸款;借款 v. 借出
assess /??ses/ v. 評(píng)估;評(píng)定
[6] In a forthcoming paper, meanwhile, Arthur Jago of the University of Washington and Glenn Carroll of the Stanford Graduate School of Business investigate how willing people are to give rather than earn credit—specifically for work that someone did not do on their own. They showed volunteers something attributed to a specific person—an artwork, say, or a business plan—and then revealed that it had been created either with the help of an algorithm or with the help of human assistants. Everyone gave less credit to producers when they were told they had been helped, but this effect was more pronounced for work that involved human assistants. Not only did the participants see the job of overseeing the algorithm as more demanding than supervising humans, but they did not feel it was as fair for someone to take credit for the work of other people.
【與此同時(shí),在即將發(fā)表的一篇論文中,華盛頓大學(xué)的亞瑟·加哥(Arthur Jago)和斯坦福大學(xué)商學(xué)院的格倫·卡羅爾(Glenn Carroll)的關(guān)注點(diǎn)從人們多想歸功于自己轉(zhuǎn)向了有多愿意認(rèn)可他人的功勞,特別是對(duì)于那些并非由某個(gè)人獨(dú)力完成的工作。他們先是向?qū)嶒?yàn)志愿者展示某件被歸為某人出品的東西,比如一件藝術(shù)品或一份商業(yè)計(jì)劃書(shū),然后再告訴他們它是在算法或其他人的幫助下做出來(lái)的。得知背后有幫助后,所有志愿者都會(huì)認(rèn)為創(chuàng)作人的功勞沒(méi)那么大了,而這種效應(yīng)在有人幫助的作品上更為明顯。志愿者不僅認(rèn)為監(jiān)督算法運(yùn)行比指揮人工作更難,還覺(jué)得把其他人的工作一并算在自己頭上不太公平?!?/p>
【重點(diǎn)詞匯】
forthcoming /?f??θ?k?m??/ adj. 即將發(fā)生的
volunteer /?v?l?n?t??(r)/ n. 義務(wù)工作者;志愿者 v. 志愿做;義務(wù)做
attribute /??tr?bju?t/ v. 把……歸因于
assistant /??s?st?nt/ n. 助理;助手 adj. 助理的;副的
participant /pɑ??t?s?p?nt/ n. 參與者;參加者
oversee /???v??si?/ v. 監(jiān)督,監(jiān)視
supervise /?su?p?va?z/ v. 監(jiān)督;管理
[7] Another paper, by Anuj Kapoor of the Indian Institute of Management Ahmedabad and his co-authors, examines whether AIs or humans are more effective at helping people lose weight. The authors looked at the weight loss achieved by subscribers to an Indian mobile app, some of whom used only an AI coach and some of whom used a human coach, too. They found that people who also used a human coach lost more weight, set themselves tougher goals and were more fastidious about logging their activities. But people with a higher body mass index did not do as well with a human coach as those who weighed less. The authors speculate that heavier people might be more embarrassed by interacting with another person.
【印度管理學(xué)院艾哈邁達(dá)巴德分校的阿努杰·卡普爾(Anuj Kapoor)和他的合著者的另一篇論文研究了AI和人類(lèi)在幫助人們減肥方面是否更有效。作者觀察了一個(gè)印度移動(dòng)App用戶(hù)實(shí)現(xiàn)的減肥效果,其中一些人只使用AI教練,另一些人同時(shí)也使用人工教練。他們發(fā)現(xiàn),同時(shí)使用人工教練的人減掉了更多的體重,為自己設(shè)定了更嚴(yán)格的目標(biāo),并且更嚴(yán)謹(jǐn)?shù)赜涗浟怂麄兊幕顒?dòng)。但是BMI指數(shù)較高的人在人工教練指導(dǎo)下的表現(xiàn)不如體重較輕的人。作者推測(cè),體重較重的人在與他人互動(dòng)時(shí)可能會(huì)更加尷尬?!?/p>
【重點(diǎn)詞匯】
subscribe /s?b?skra?b/ v. 訂閱;持有 (意見(jiàn)或信仰)
coach /k??t?/ n.(體育運(yùn)動(dòng)的)教練
fastidious /f??st?di?s/ adj. 一絲不茍的;嚴(yán)謹(jǐn)?shù)?/p>
speculate /?spekjule?t/ v. 推測(cè);猜測(cè)
embarrass /?m?b?r?s/ v. 使尷尬,使窘迫
[8] The picture that emerges from such research is messy. It is also dynamic: just as technologies evolve, so will attitudes. But it is crystal-clear on one thing. The impact of ChatGPT and other AIs will depend not just on what they can do, but also on how they make people feel.
【這些研究呈現(xiàn)的圖景很混亂。它也是動(dòng)態(tài)的:技術(shù)在演進(jìn),人們的態(tài)度也會(huì)變化。但有一點(diǎn)非常清晰。ChatGPT和其他AI的影響不僅取決于它們本身的能耐,還取決于它們帶給人類(lèi)的感覺(jué)?!?/p>
【重點(diǎn)詞匯】
emerge /i?m??d?/ v. 出現(xiàn);浮現(xiàn)
messy /?mesi/ adj. 骯臟的;混亂而復(fù)雜的
dynamic /da??n?m?k/ adj. 充滿(mǎn)活力的;精力充沛的
需獲取更多管理類(lèi)聯(lián)考考研英語(yǔ)二外刊選讀內(nèi)容,可點(diǎn)擊下方“資料下載”處,免費(fèi)下載!
工商管理MBA備考資料免費(fèi)領(lǐng)取
去領(lǐng)取
共收錄117.93萬(wàn)道題
已有25.02萬(wàn)小伙伴參與做題
售后投訴:156-1612-8671