摘要:本文為2022年九江職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)科目考試大綱,正在備考江西高職單招考試的考生來查漏補缺,為制定更全面的復(fù)習(xí)計劃做參考吧,希望對考生有所幫助。
一、考試內(nèi)容
以教育部2012年《普通高等學(xué)校招生全國統(tǒng)一考試大綱(課程標準實驗)》和《江西省2012年普通高考自行命題科目考試說明》公布的內(nèi)容范圍為依據(jù),以江西省教育廳《關(guān)于我省普通高中新課程編排的指導(dǎo)意見》(贛教基字[2008]41號)文件中規(guī)定的數(shù)學(xué)科目的必修模塊為主要考核內(nèi)容。主要考核數(shù)學(xué)基礎(chǔ)知識的掌握程度,兼顧一定的數(shù)學(xué)能力考查,重點知識內(nèi)容及要求如下:
1.集合
(1)了解集合的含義及表示、元素與集合的隸屬關(guān)系;
(2)理解集合間的包含、相等關(guān)系;
(3)會進行集合的交、并運算。
2.函數(shù)
(1)理解函數(shù)的概念,會求函數(shù)定義域和函數(shù)值,了解函數(shù)圖像的平移關(guān)系;
(2)了解簡單的分段函數(shù),并能進行簡單的計算和應(yīng)用;
(3)理解函數(shù)的四種特性,會進行簡單的分析;
(4)理解冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的概念、圖像和性質(zhì),會進行相關(guān)的計算和應(yīng)用;
(5)理解三角函數(shù)的周期性,掌握誘導(dǎo)公式、基本恒等關(guān)系式,并能進行一定的計算和應(yīng)用;
(6)理解正弦型曲線、二次函數(shù)的概念、圖像和性質(zhì),會進行相關(guān)的計算和應(yīng)用。
3.立體幾何
(1)認識并能畫出簡單的空間圖形;
(2)理解空間點、直線、平面的位置關(guān)系,了解常見的用于推理依據(jù)的公理和定理,會進行簡單命題的判定。
4.平面解析幾何
(1)理解直線的點斜式、兩點式、斜截式和一般式方程,會根據(jù)直線方程進行位置判定和進行相關(guān)計算;
(2)了解直線斜截式方程與一次函數(shù)的關(guān)系,能求兩直線的交點坐標。
(3)掌握圓的標準方程和一般方程,能判定直線與圓、圓與圓之間的位置關(guān)系;
(4)掌握橢圓、雙曲線、拋物線的定義、圖形、離心率和標準方程,知道它們簡單的幾何性質(zhì),會進行簡單的綜合計算。
5.平面向量
(1)理解平面向量及其運算的概念、幾何意義;
(2)掌握平面向量的線性運算及其性質(zhì),會用坐標進行有關(guān)運算;
(3)掌握平面向量的模和數(shù)量積的概念、性質(zhì),會用坐標進行有關(guān)運算。
6.數(shù)列
(1)理解等差數(shù)列、等比數(shù)列的相關(guān)概念和通項公式,知道等差中項、等比中項的概念;
(2)能在具體問題情境中識別數(shù)列的等差或等比關(guān)系,并能進行簡單的綜合計算。
7.不等式
(1)了解常見的不等式關(guān)系,能進行簡單的不等式求解,會從問題中抽象出一元二次不等式;
(2)通過圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程之間的聯(lián)系,并會求解有關(guān)問題。
8.概率與統(tǒng)計
(1)了解概率的統(tǒng)計定義,理解等可能事件的古典概型,會進行簡單的古典概型概率計算;
(2)掌握概率的加法公式,會計算樣本平均數(shù)和標準差。
二、“考試形式與試卷結(jié)構(gòu)”按以下規(guī)定實施。
答卷方式:閉卷、筆試??荚囅薅ㄓ脮r為50分鐘??荚嚥辉试S使用計算器。
試題分選擇題、填空題和解答題三種題型。選擇題是四選一型的單項選擇題;填空題只要求直接填寫結(jié)果,不必寫出計算過程或推證過程;解答題為計算題型,應(yīng)寫出文字說明或演算步驟。
試題按其難度分為較易題、中等題,難度在0.7以上的試題為較易題,難度為0.3-0.7的試題為中等題。容易題和中等題的分值之比約為8∶2。
全卷共14題,滿分100分。其中選擇題4小題,每小題5分,共計20分;填空題4小題,每小題6分,共計24分;判斷題4小題,每小題4分,共計16分;解答題共2小題,共計40分。