成人高考文科數(shù)學(xué)考點(diǎn):三角形中的三角函數(shù)式

成人高考 責(zé)任編輯:楊銳頻 2021-02-19

摘要:成人高考高起點(diǎn)是高起本和高起專的統(tǒng)稱,2021年的成人高考已經(jīng)進(jìn)入備考階段。報(bào)考成考高起點(diǎn)文史類專業(yè)的考生需要考文科數(shù)學(xué),理工類專業(yè)則考理科數(shù)學(xué)。那么2021年成人高考高起點(diǎn)文科數(shù)學(xué)應(yīng)該如何復(fù)習(xí)三角形呢?請看下文。

成人高考文科數(shù)學(xué)考點(diǎn):三角形中的三角函數(shù)式

編輯推薦:2021年成人高考高起點(diǎn)文科數(shù)學(xué)復(fù)習(xí)資料匯總

三角形中的三角函數(shù)關(guān)系是歷年成人高考高考的重點(diǎn)內(nèi)容之一,本節(jié)主要幫助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧。

難點(diǎn)

(★★★★★)已知△ABC的三個(gè)內(nèi)角A、B、C滿足A+C=2B. ,求cos 的值。

難點(diǎn) 不等式的證明策略

不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合。高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本難點(diǎn)著重培養(yǎng)考生數(shù)學(xué)式的變形能力,邏輯思維能力以及分析問題和解決問題的能力。

難點(diǎn)

(★★★★)已知a>0,b>0,且a+b=1。

難點(diǎn) 解不等式

不等式在生產(chǎn)實(shí)踐和相關(guān)學(xué)科的學(xué)習(xí)中應(yīng)用廣泛,又是學(xué)習(xí)高等數(shù)學(xué)的重要工具,所以不等式是高考數(shù)學(xué)命題的重點(diǎn),解不等式的應(yīng)用非常廣泛,如求函數(shù)的定義域、值域,求參數(shù)的取值范圍等,高考試題中對(duì)于解不等式要求較高,往往與函數(shù)概念,特別是二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等有關(guān)概念和性質(zhì)密切聯(lián)系,應(yīng)重視;從歷年高考題目看,關(guān)于解不等式的內(nèi)容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式。

難點(diǎn)

(★★★★)解關(guān)于x的不等式

難點(diǎn) 不等式的綜合應(yīng)用

不等式是繼函數(shù)與方程之后的又一重點(diǎn)內(nèi)容之一,作為解決問題的工具,與其他知識(shí)綜合運(yùn)用的特點(diǎn)比較突出。不等式的應(yīng)用大致可分為兩類:一類是建立不等式求參數(shù)的取值范圍或解決一些實(shí)際應(yīng)用問題;另一類是建立函數(shù)關(guān)系,利用均值不等式求最值問題、本難點(diǎn)提供相關(guān)的思想方法,使考生能夠運(yùn)用不等式的性質(zhì)、定理和方法解決函數(shù)、方程、實(shí)際應(yīng)用等方面的問題。

難點(diǎn)

(★★★★★)設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個(gè)根x1、x2滿足0

(1)當(dāng)x∈[0,x1 時(shí),證明x

(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,證明:x0< 。

更多資料
更多課程
更多真題
溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請考生以權(quán)威部門公布的內(nèi)容為準(zhǔn)!
專注在線職業(yè)教育24年

項(xiàng)目管理

信息系統(tǒng)項(xiàng)目管理師

廠商認(rèn)證

信息系統(tǒng)項(xiàng)目管理師

信息系統(tǒng)項(xiàng)目管理師

學(xué)歷提升

!
咨詢在線老師!