2021年成人高考專升本高數(shù)二考前復(fù)習資料(8)

成人高考 責任編輯:楊銳頻 2021-09-29

摘要:成人高考高數(shù)二知識點有哪些?成人高考專升本高等數(shù)學二主要包括三個題型,分別是選擇題,填空題和解答題,總分值為150分。下文是2021年成人高考專升本高數(shù)二考前復(fù)習資料(8),供大家參考使用。

2021年成人高考專升本高數(shù)二考前復(fù)習資料(8)

點擊查看更多>>2021年成人高考專升本高數(shù)二復(fù)習資料

平面與直線

1.知識范圍

(1)常見的平面方程

點法式方程 一般式方程

(2)兩平面的位置關(guān)系(平行、垂直和斜交)

(3)點到平面的距離

(4)空間直線方程

標準式方程(又稱對稱式方程或點向式方程)一般式方程參數(shù)式方程

(5)兩直線的位置關(guān)系(平行、垂直)

(6)直線與平面的位置關(guān)系(平行、垂直和直線在平面上)

2.要求

(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。會求兩平面間的夾角。

(2)會求點到平面的距離。

(3)了解直線的一般式方程,會求直線的標準式方程、參數(shù)式方程。會判定兩直線平行、垂直。

(4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。

導(dǎo)數(shù)與微分

1、知識范圍

(1)導(dǎo)數(shù)概念

導(dǎo)數(shù)的定義、左導(dǎo)數(shù)與右導(dǎo)數(shù)、函數(shù)在一點處可導(dǎo)的充分必要條件導(dǎo)數(shù)的幾何意義與物理意義、可導(dǎo)與連續(xù)的關(guān)系

(2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式

導(dǎo)數(shù)的四則運算、反函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的基本公式

(3)求導(dǎo)方法

復(fù)合函數(shù)的求導(dǎo)法、隱函數(shù)的求導(dǎo)法、對數(shù)求導(dǎo)法由參數(shù)方程確定的函數(shù)的求導(dǎo)法、求分段函數(shù)的導(dǎo)數(shù)

(4)高階導(dǎo)數(shù)

高階導(dǎo)數(shù)的定義、高階導(dǎo)數(shù)的計算

(5)微分

微分的定義、微分與導(dǎo)數(shù)的關(guān)系、微分法則一階微分形式不變性

2、要求

(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點處的導(dǎo)數(shù)的方法。

(2)會求曲線上一點處的切線方程與法線方程。

(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運算法則及復(fù)合函數(shù)的求導(dǎo)方法,會求反函數(shù)的導(dǎo)數(shù)。

(4)掌握隱函數(shù)求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)。

(5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的階導(dǎo)數(shù)。

(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。

(二)微分中值定理及導(dǎo)數(shù)的應(yīng)用

1、知識范圍

(1)微分中值定理

羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理

(2)洛必達(L‘Hospital)法則

(3)函數(shù)增減性的判定法

(4)函數(shù)的極值與極值點最大值與最小值

(5)曲線的凹凸性、拐點

(6)曲線的水平漸近線與鉛直漸近線

相關(guān)閱讀:

2021年成人高考專升本高數(shù)(二)真題及答案

更多資料
更多課程
更多真題
溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請考生以權(quán)威部門公布的內(nèi)容為準!
專注在線職業(yè)教育24年

項目管理

信息系統(tǒng)項目管理師

廠商認證

信息系統(tǒng)項目管理師

信息系統(tǒng)項目管理師

!
咨詢在線老師!