摘要:在成人高考專升本中,只有部分專業(yè)需要考數(shù)學(xué),而且在其中,數(shù)學(xué)主要分為高數(shù)一和高數(shù)二。對于2021年成人高考專升本高數(shù)(一)考試,下面我們就一起來看看2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料(2)。
2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料(2)
點擊查看>>更多2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料
充分條件、必要條件和充要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件p和結(jié)論q之間的關(guān)系.本節(jié)主要是通過不同的知識點來剖析充分必要條件的意義,讓考生能準(zhǔn)確判定給定的兩個命題的充要關(guān)系.
難點例題
已知關(guān)于x的實系數(shù)二次方程x2+ax+b=0有兩個實數(shù)根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件.
解題分析
求實數(shù)m的取值范圍.
命題意圖:本題以含絕對值的不等式及一元二次不等式的解法為考查對象,同時考查了充分必要條件及四種命題中等價命題的應(yīng)用,強(qiáng)調(diào)了知識點的靈活性.
知識依托:本題解題的閃光點是利用等價命題對題目的文字表述方式進(jìn)行轉(zhuǎn)化,使考生對充要條件的難理解變得簡單明了.
錯解分析:對四種命題以及充要條件的定義實質(zhì)理解不清晰是解此題的難點,對否命題,學(xué)生本身存在著語言理解上的困難.
技巧與方法:利用等價命題先進(jìn)行命題的等價轉(zhuǎn)化,搞清晰命題中條件與結(jié)論的關(guān)系,再去解不等式,找解集間的包含關(guān)系,進(jìn)而使問題解決.
解:由題意知:
命題:若p是q的必要而不充分條件的等價命題即逆否命題為:p是q的充分不必要條件.
命題意圖:本題重點考查充要條件的概念及考生解答充要條件命題時的思維的嚴(yán)謹(jǐn)性.
知識依托:以等比數(shù)列的判定為主線,使本題的閃光點在于抓住數(shù)列前n項和與通項之間的遞推關(guān)系,嚴(yán)格利用定義去判定.
錯解分析:因為題目是求的充要條件,即有充分性和必要性兩層含義,考生很容易忽視充分性的證明.
錦囊妙計
本難點所涉及的問題及解決方法主要有:
(1)要理解“充分條件”“必要條件”的概念:當(dāng)“若p則q”形式的命題為真時,就記作p q,稱p是q的充分條件,同時稱q是p的必要條件,因此判斷充分條件或必要條件就歸結(jié)為判斷命題的真假.
(2)要理解“充要條件”的概念,對于符號“”要熟悉它的各種同義詞語:“等價于”,“當(dāng)且僅當(dāng)”,“必須并且只需”,“……,反之也真”等.
(3)數(shù)學(xué)概念的定義具有相稱性,即數(shù)學(xué)概念的定義都可以看成是充要條件,既是概念的判斷依據(jù),又是概念所具有的性質(zhì).
(4)從集合觀點看,若AB,則A是B的充分條件,B是A的必要條件;若A=B,則A、B互為充要條件.
(5)證明命題條件的充要性時,既要證明原命題成立(即條件的充分性),又要證明它的逆命題成立(即條件的必要性).
相關(guān)閱讀:
相關(guān)推薦
鎖定考點,突破難點,2022年成人高考高效通過!點擊馬上聽課>>成考各科精講視頻教程