2019年成人高考專升本(高數(shù)一)復習內容四

成人高考 責任編輯:胡燕 2020-03-30

摘要:下面給各位考生帶來的是:2019年成人高考專升本(高數(shù)一)復習內容多元函數(shù)微積分學、微分中值定理及導數(shù)的應用復習,供參考。

下面給各位考生帶來的是:2019年成人高考專升本(高數(shù)一)復習內容多元函數(shù)微積分學、微分中值定理及導數(shù)的應用復習,供參考。

多元函數(shù)微積分學

(一)多元函數(shù)微分學

1.知識范圍

(1)多元函數(shù)

多元函數(shù)的定義 二元函數(shù)的幾何意義 二元函數(shù)極限與連續(xù)的概念

(2)偏導數(shù)與全微分

偏導數(shù) 全微分 二階偏導數(shù)

(3)復合函數(shù)的偏導數(shù)

(4)隱函數(shù)的偏導數(shù)

(5)二元函數(shù)的無條件極值與條件極值

2.要求

(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會求二次函數(shù)的表達式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對計算不作要求)。

(2)理解偏導數(shù)概念,了解偏導數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。

(3)掌握二元函數(shù)的一、二階偏導數(shù)計算方法。

(4)掌握復合函數(shù)一階偏導數(shù)的求法。

(5)會求二元函數(shù)的全微分。

(6)掌握由方程 所確定的隱函數(shù) 的一階偏導數(shù)的計算方法。

(7)會求二元函數(shù)的無條件極值。會用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。

(二)二重積分

1.知識范圍

(1)二重積分的概念

二重積分的定義二重積分的幾何意義

(2)二重積分的性質

(3)二重積分的計算

(4)二重積分的應用

2.要求

(1)理解二重積分的概念及其性質。

(2)掌握二重積分在直角坐標系及極坐標系下的計算方法。

(3)會用二重積分解決簡單的應用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質量)。

微分中值定理及導數(shù)的應用復習

(二)微分中值定理及導數(shù)的應用

1.知識范圍

(1)微分中值定理

羅爾(Rolle)定理 拉格朗日(Lagrange)中值定理

(2)洛必達(L‘Hospital)法則

(3)函數(shù)增減性的判定法

(4)函數(shù)的極值與極值點最大值與最小值

(5)曲線的凹凸性、拐點

(6)曲線的水平漸近線與鉛直漸近線

2.要求

(1)理解羅爾定理、拉格朗日中值定理及它們的幾何意義。會用羅爾定理證明方程根的存在性。會用拉格朗日中值定理證明簡單的不等式。

(2)熟練掌握用洛必達法則求各種型未定式的極限的方法。

(3)掌握利用導數(shù)判定函數(shù)的單調性及求函數(shù)的單調增、減區(qū)間的方法,會利用函數(shù)的單調性證明簡單的不等式。

(4)理解函數(shù)極值的概念。掌握求函數(shù)的極值、最大值與最小值的方法,會解簡單的應用問題。

(5)會判斷曲線的凹凸性,會求曲線的拐點。

(6)會求曲線的水平漸近線與鉛直漸近線。

(7)會作出簡單函數(shù)的圖形。

更多資料
更多課程
更多真題
溫馨提示:因考試政策、內容不斷變化與調整,本網站提供的以上信息僅供參考,如有異議,請考生以權威部門公布的內容為準!
專注在線職業(yè)教育24年

項目管理

信息系統(tǒng)項目管理師

廠商認證

信息系統(tǒng)項目管理師

信息系統(tǒng)項目管理師

!
咨詢在線老師!